[1] 葛鑫,刘光耀,甘铁军,等.合成MRI联合弥散加权成像评估胶质瘤级别及肿瘤细胞增殖活性[J].中国医学影像技术,2023,39(2):171~175. [2] 曾玉萍,彭莉玲,冷晓明,等.18F-FDG PET/MRI多模态显像在成人弥漫性脑胶质瘤分级诊断中的应用研究 [J].中华神经医学杂志,2022,21(8):801~808. [3] 葛鑫,孙胜玉,刘文潇,等.合成MRI联合三维动脉自旋标记成像预测弥漫性胶质瘤分级及肿瘤细胞增殖活性的研究[J].中华放射学杂志,2022,56(5):524~529. [4] 冯梦薇,方明,王国华.3D-ASL与DCE-MRI在鉴别诊断脑高级别胶质瘤与脑转移瘤中的应用价值[J].中国临床医学影像杂志,2021,32(8):574~578. [5] Dubois J,Alison M,Counsell SJ,et al.MRI of the neonatal brain:a review of methodological challenges and neuroscientific advances[J].J Magn Reson Imaging,2021,53(5):1318~1343. [6] Han Y,Yang Y,Shi ZS,et al.Distinguishing brain inflammation from grade II glioma in population without contrast enhancement:a radiomics analysis based on conventional MRI[J].Eur J Radiol,2021,134:109467. [7] Canalini L,Klein J,Miller D,et al.Segmentation-based registration of ultrasound volumes for glioma resection in image-guided neurosurgery[J].Int J Comput Assist Radiol Surg,2019,14(10):1697~1713. [8] van Kempen EJ,Post M,Mannil M,et al.Performance of machine learning algorithms for glioma segmentation of brain MRI:a systematic literature review and meta-analysis[J].Eur Radiol,2021,31(12):9638~9653. [9] Crasto N,Kirubarajan A,Sussman D.Anthropomorphic brain phantoms for use in MRI systems:a systematic review[J].MAGMA,2022,35(2):277~289. [10] 白慧萍,张增俊,魏思文.3D-BRAVO增强成像组学分析评估儿童脑胶质瘤IDH1基因突变的价值[J].中国医学影像学杂志,2021,29(1):19~23. [11] 张晓宇,王彬,安卫超,等.基于融合损失函数的3DU-Net++脑胶质瘤分割网络[J].计算机科学,2021,48(9):187~193. [12] 张巍,王凯,陈谦,等.多模态成像技术在脑胶质瘤复发诊断中的应用与价值[J].中国临床医学影像杂志,2021,32(12):837~840. [13] Caro-Domínguez P,Sánchez-Garduño JJ,Martínez-Moya M,et al.Brain MRI without anesthesia in children less than 3 months old[J].Radiologia (Engl Ed),2022,64(5):415~421. [14] Zhang F,Daducci A,He Y,et al.O'Donnell LJ.Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography:a review[J].Neuroimage,2022,249:118870. [15] Gonuguntla V,Yang E,Guan Y,et al.Brain signatures based on structural MRI:Classification for MCI,PMCI,and AD.Hum Brain Mapp,2022,43(9):2845~2860. [16] 何金龙,高阳,李波,等.DCE-MRI联合MTI在脑胶质瘤分级及浸润中的应用价值[J].临床放射学杂志,2021,40(4):651~655. [17] 蒋健.胶质瘤恶性转化预判研究进展[J].临床放射学杂志,2022,41(3):575~578. [18] Lam V,Phillips J,Harrild E,et al.Association between ageing,brain chemistry and white matter volume revealed with complementary MRI and FTIR brain imaging[J].Analyst,2022,147(23):5274~5282. |