Chinese Journal of Stereotactic and Functional Neurosurgery ›› 2024, Vol. 37 ›› Issue (3): 186-192.DOI: 10.19854/j.cnki.1008-2425.2024.03.0013
Received:
2024-05-23
Online:
2024-06-25
Published:
2024-09-24
通讯作者:
魏林节 weilinjie8888@163.com
基金资助:
CLC Number:
赵晓龙, 曾燕, 魏林节. 高原环境对中枢神经系统的影响研究进展[J]. 立体定向和功能性神经外科杂志, 2024, 37(3): 186-192.
[1] Lam F,Subhi R,Houdek J,et al.The prevalence of hypoxemia among pediatric and adult patients presenting to healthcare facilities in low-and middle-income countries:protocol for a systematic review and meta-analysis[J].Syst Rev,2020,9:67. [2] Troncoso M,Bannoud N,Carvelli L,et al.Hypoxia-ischemia alters distribution of lysosomal proteins in rat cortex and hippocampus[J].Biol Open,2018,7(10):bio036723. [3] Lee P,Chandel NS,Simon MC.Cellular adaptation to hypoxia through hypoxia inducible factors and beyond[J].Nat Rev Mol Cell Biol,2020,21(5):268~283. [4] Vetrovoy O,Sarieva K,Galkina O,et al.Neuroprotective mechanism of hypoxic post-conditioning involves HIF1-associated regulation of the pentose phosphate pathway in rat brain[J].Neurochem Res,2019,44(6):1425~1436. [5] Felfly H,Zambon AC,Xue J,et al.Severe hypoxia:consequences to neural stem cells and neurons[J].J Neurol Res,2011,1(5):10. [6] Ji W,Zhang Y,Ge R,et al.NMDA receptor-mediated excitotoxicity is involved in neuronal apoptosis and cognitive impairment induced by chronic hypobaric hypoxia exposure at high altitude[J].High Alt Med Biol,2021,22(1):45~57. [7] Liu B,Yuan M,Yang M,et al.The Effect of High~Altitude Hypoxia on Neuropsychiatric Functions[J].High Alt Med Biol,2024,25(1):26~41. [8] Zhu Y,Wang W,Xian N,et al.Inhibition of TYRO3/Akt signaling participates in hypoxic injury in hippocampal neurons[J].Neural Regeneration Research,2016,11(5):752~757. [8] Zhu YZ,Wang W,Xian N,et al.Inhibition of TYRO3/Akt signaling participates in hypoxic injury in hippocampal neurons[J].Neural Regen Res,2016,11(5):752~757. [9] Wang XW,Li J,Wu DJ,et al.Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway[J].Exp Biol Med,2016,241(2):177~183. [10] Lee Y,Lee S,Park JW,et al.Hypoxia-induced neuroinflammation and learning-memory impairments in adult zebrafish are suppressed by glucosamine[J].Mol Neurobiol,2018,55(11):8738~8753. [11] Cunha-Rodrigues MC,BALDUCI CT DN,Tenório F,et al.GABA function may be related to the impairment of learning and memory caused by systemic prenatal hypoxia-ischemia[J].Neurobiol Learn Mem,2018,149:20~27. [12] Yang YS,Son SJ,Choi JH,et al.Synaptic transmission and excitability during hypoxia with inflammation and reoxygenation in hippocampal CA1 neurons[J].Neuropharmacology,2018,138:20~31. [13] DiSabato DJ,Quan N,Godbout JP.Neuroinflammation:the devil is in the details[J].J Neurochem,2016,139:136~153. [14] Zhu X,Liu H,Wang D,et al.NLRP3 deficiency protects against hypobaric hypoxia induced neuroinflammation and cognitive dysfunction[J].Ecotoxicol Environ Saf,2023,255:114828. [15] Peng X,Li C,Yu W,et al.Propofol attenuates hypoxia-induced inflammation in BV2 microglia by inhibiting oxidative stress and NF-κB/Hif-1α signaling[J].BioMed Research International,2020:8978704. [16] Merelli A,Repetto M,Lazarowski A,et al.Hypoxia,oxidative stress,and inflammation:three faces of neurodegenerative diseases[J].J Alzheimers Dis,2021,82(s1):S109~S126. [17] Eyford BA,Singh CSB,Abraham T,et al.A nanomule peptide carrier delivers siRNA across the intact blood-brain barrier to attenuate ischemic stroke[J].Front Mol Biosci,2021,8:611367. [18] Guo L,Zhu L.Multiple roles of peripheral immune system in modulating ischemia/hypoxia-induced neuroinflammation[J].Front Mol Biosci,2021,8:752465. [19] Sha S,Tan J,Miao Y,et al.The role of autophagy in hypoxia-induced neuroinflammation[J].DNA Cell Biol,2021,40(6):733~739. [20] Yang Z,Zhong L,Zhong S,et al.Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model[J].Exp Mol Pathol,2015,98(2):219~224. [21] Li Y,Zhou D,Ren Y,et al.Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1[J].Autophagy,2019,15(3):478~492. [22] Carod-Artal FJ.High-altitude headache and acute mountain sickness[J].Neurologia,2014,29(9):533~540. [23] Bian SZ,Jun J,Li QN,et al.Hemodynamic characteristics of high-altitude headache following acute high altitude exposure at 3700 m in young Chinese men[J].J Headache Pain,2015,16:527. [24] Carod-Artal FJ.High-altitude headache and acute mountain sickness[J].Neurologia,2014,29(9):533~540. [25] Moral Y,Robertson NJ,Gonide-Cerio F,et al.Neonatal hypoxia-ischemia:cellular and molecular brain damage and therapeutic modulation of neurogenesis[J].Rev Neurol,2019,68(1):23~36. [26] Chen PS,Chiu WT,Hsu PL,et al.Pathophysiological implications of hypoxia in human diseases[J].J Biomed Sci,2020,27(1):63. [27] Cha J,Zea-Hernandez J A,Sin S,et al.The effects of obstructive sleep apnea syndrome on the dentate gyrus and learning and memory in children[J].J Neurosci,2017,37(16):4280~4288. [28] Terraneo L,Samaja M.Comparative response of brain to chronic hypoxia and hyperoxia[J].Int J Mol Sci,2017,18(9):1914. [29] Qaid EYA,Zakaria R,Sulaiman S F,et al.Insight into potential mechanisms of hypobaric hypoxia–induced learning and memory deficit–Lessons from rat studies[J].Hum Exp Toxicol,2017,36(12):1315~1325. [30] Nation DA,Bondi MW,Gayles E,et al.Mechanisms of memory dysfunction during high altitude hypoxia training in military aircrew[J].J Int Neuropsychol Soc,2017,23(1):1~10. [31] Zhang G,Zhou SM,Yuan C,et al.The effects of short-term and long-term exposure to a high altitude hypoxic environment on neurobehavioral function[J].High Alt Med Biol,2013,14(4):338~341. [32] Zhang X,Zhang X,Xv J,et al.Crocin attenuates acute hypobaric hypoxia-induced cognitive deficits of rats[J].Eur J Pharmacol,2018,818:300~305. [33] Lee Y,Lee S,Park JW,et al.Hypoxia-induced neuroinflammation and learning–memory impairments in adult zebrafish are suppressed by glucosamine[J].Mol Neurobiol,2018,55(11):8738~8753. [34] Srinath R,Ahmad FMH,Asturkar V,et al.New-onset seizure at high altitude among healthy males[J].Seizure,2022,97:82~87. [35] Xu YH,Fan Q L.Relationship between chronic hypoxia and seizure susceptibility[J].CNS Neurosci Ther,2022,28(11):1689~1705. [36] Xie Y,Qin S,Zhang R,et al.The Effects of high-altitude environment on brain function in a seizure model of young-aged rats[J].Front Pediatr,2020,10,8:561. [37] de Aquino Lemos V,Antunes H K M,Dos Santos R V T,et al.High altitude exposure impairs sleep patterns,mood,and cognitive functions[J].Psychophysiology,2012,49(9):1298~1306. [38] Mizuno K,Asano K,Okudaira N.Sleep and respiration under acute hypobaric hypoxia[J].Jpn J Physiol,1993,43(2):161~175. [39] Nussbaumer-Ochsner Y,Ursprung J,Siebenmann C,et al.Effect of short-term acclimatization to high altitude on sleep and nocturnal breathing[J].Sleep,2012,35(3):419~423. [40] Bloch KE,Buenzli JC,Latshang TD,et al.Sleep at high altitude:guesses and facts[J].J Appl Physiol,2015,119(12):1466~1480. [41] Ha ZD,Pan KL,Jian XL,et al.Changes to sleep patterns in young migrants at high altitude[J].Chin J Tuberc Respir Dis ,2017,49(9):689~692. [42] Windsor JS,Rodway GW.Sleep disturbance at altitude[J].Curr Opin Pulm Med,2012,18(6):554~560. [43] Hvas AM,Favaloro EJ.Gender related issues in thrombosis and hemostasis[J].Expert Rev Hematol,2017,10(11):941~949. [44] Yan X,Zhang J,Gong Q,et al.Cerebrovascular reactivity among native-raised high altitude residents:an fMRI study[J].BMC Neurosci,2011,12:1~10. [45] Wei L,Zhang J,Zhang B,et al.Complement C3 participates in the function and mechanism of traumatic brain injury at simulated high altitude[J].Brain Res,2020,1726:146423. [46] Wang H,Zhu X,Xiang H,et al.Effects of altitude changes on mild-to-moderate closed-head injury in rats following acute high-altitude exposure[J].Exp Ther Med.2019,17(1):847~856. [47] Feng J,Zhao X,Gurkoff GG,et al.Post-traumatic hypoxia exacerbates neuronal cell death in the hippocampus[J].J Neurotrauma,2012,29(6):1167~1179. [48] Foster GE.High on altitude:new attitudes toward human cerebral blood flow regulation and altitude acclimatization[J].The Journal of Physiology,2011,589(Pt 3):449. [48] Foster GE.High on altitude:new attitudes toward human cerebral blood flow regulation and altitude acclimatization[J].J Physiol,2011,589(Pt 3):449. [49] Dong X,Zhang X,Li D,et al.[Protective effect of salidroside against high altitude hypoxia-induced brain injury in rats].Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2015,31(10):1327~1331. [50] Shlim DR.The use of acetazolamide for the prevention of high-altitude illness[J].J Travel Med,2020,27(6):taz106. [51] Pandit A,Karmacharya P,Pathak R,et al.Efficacy of NSAIDs for the prevention of acute mountain sickness:a systematic review and meta-analysis[J].J Community Hosp Intern Med Perspect,2014,4(4):24927. [52] Liu P,Zhou P,Zhang X,et al.Pterostilbene mediates glial and immune responses to alleviate chronic intermittent hypoxia-induced oxidative stress in nerve cells[J].PLoS One,2023,18(6):e0286686. [53] Botao Y,Ma J,Xiao WJ,et al.Protective effect of ginkgolide B on high altitude cerebral edema of rats[J].High Alt Med Biol,2013,14(1):61~64. [54] Wang XY,Sun HC,Cui LL,et al.Acute high-altitude hypoxia exposure causes neurological deficits via formaldehyde accumulation[J].CNS Neurosci Ther,2022,28(8):1183~1194. [55] Huo Y,Zhao A,Song J,et al.Betelnut polyphenols provide protection against high-altitude hypoxia in rats[J].Nan Fang Yi Ke Da Xue Xue Bao,2021,20,41(5):671~678. [56] Brimson JM,Tencomnao T.Rhinacanthusnasutus protects cultured neuronal cells against hypoxia induced cell death[J].Molecules,2011,26,16(8):6322~6338. [56] Brimson JM,Tencomnao T.Rhinacanthus nasutus protects cultured neuronal cells against hypoxia induced cell death[J].Molecules,2011,16(8):6322~6338. |
[1] | Wang Jiaguang, Li Junqing, Zhao Bin, Ma Xiaoer. Effect analysis of superficial temporal artery(STA)-middle cerebral artery(MCA)bypass combined with pedicled temporal parietal fascia application in the treatment of adult moyamoya disease(Analysis of 18 clinical cases) [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(3): 156-160. |
[2] | Zhang Xiaoyan, Wang Fenglan, Dang Lei, Gao Yanlei. The diagnostic value of carotid integrative ultrasound and high-resolution MRI 3D black blood technique in cerebral infarction [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(3): 161-164. |
[3] | . [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(3): 174-177. |
[4] | Lei Hui, Dong Jufeng, Pan Cunyun, Di Li Xiati. Efficacy and safety analysis of 3D slicer 3D reconstruction technology assisted neuroendoscopic surgery in the treatment of cerebral hemorrhage [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(2): 83-88. |
[5] | Zhang Chunyan, Hu Yongsheng, Xia Chunhua, He Xinhua, Dong Bin, Chen Bing, Wang Jinwu, Wang Ziyong. The value of 4D-CT Temporal average inversion imaging in the diagnosis of acute ischemic stroke [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(2): 89-94. |
[6] | Zhang Mengqi, Xia Chunhua, Zhai Dengyue, Wang Jinwu, Wang Jing, Li Peng. Analysis of predictive efficacy of CT perfusion imaging combined with multi-phase CT angiography in predicting cerebral edema after mechanical thrombectomy for acute ischemic stroke due to large vessel occlusion [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(2): 95-100. |
[7] | Yao Meifen, Ding Gangyu, Xu Jianhua, Wang Guojiang. Efficacy ofintravenousthrombolysiswithrt-PAinpeoplewithAcuteMildIschemicStroke [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(2): 101-106. |
[8] | . [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(2): 116-119. |
[9] | . [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(2): 120-122. |
[10] | . [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(2): 123-126. |
[11] | Wang Ajun, Zhang Nan, Li Nan, Yang Tao, Li Dongxue, Xia Chengyu. Characteristics and clinical significance of serum lipid metabolism in patients with Moyamoya disease [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(1): 28-32. |
[12] | Wu Qiang, Han Zhiqiang, Zhao Jianchun, Pang Yiqiang, Zhang Haitao, Tian Weixia, LAN Xiaoyan, Hao Chenyang. Analysis of the therapeutic effects of intraoperative VR assisted neuroendoscopic hematoma removal and stereotactic intracranial hematoma drainage in the treatment of basal ganglia HICH [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(1): 33-38. |
[13] | Yang Lihui, Jia Yanan, Song Jining, Ma Kejie, Su Jianlong, Song Zhijun. Clinical study on the treatment of severe brainstem hemorrhage through subtemporal approach assisted by neuroendoscopy [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(1): 39-43. |
[14] | Huangfu Luokai, Mao Jinlong, Rao Wei, Zou Mingming, Cao Weidong, Zhang Jianning. Curative effect of cerebrospinal fluid extraction on puncture and drainage for the treatment of hypertensive intracerebral hemorrhage on the basal ganglia [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2024, 37(1): 44-47. |
[15] | Zhao Qinghai, PanPing, WangShuai, et al. Simple stereotactic puncture and drainage for supratentorial intracerebral hematoma [J]. Chinese Journal of Stereotactic and Functional Neurosurgery, 2023, 36(6): 348-353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Chinese Journal of Stereotactic and Functional Neurosurgery
Address: Anyuan Road, Shuangqiao District, Chengde City, Hebei Province. Zip code: 230036 Telephone: 0551-62282374
he system is designed and developed by Beijing magtec Technology Development Co., Ltd. with technical support: support@magtech.com.cn