立体定向和功能性神经外科杂志 ›› 2025, Vol. 38 ›› Issue (5): 263-271.DOI: 10.19854/j.cnki.1008-2425.2025.05.0002

• 论著 • 上一篇    下一篇

多模态MRI影像组学技术精准鉴别胶质母细胞瘤与原发性中枢神经系统淋巴瘤的研究

刘钢, 蒋睿, 王伟, 夏川, 朱孝刚   

  1. 643000 自贡市 自贡市第四人民医院放射科
  • 收稿日期:2025-07-16 出版日期:2025-10-25 发布日期:2026-04-25
  • 通讯作者: 王伟 wangwei1903@163.com

Research on Accurate Differentiation Between Glioblastoma and Primary Central Nervous System Lymphoma Using Multimodal MRI Radiomics Technology

Liu Gang, Jiang Rui, Wang Wei, Xia Chuan, Zhu Xiaogang   

  1. Department of Radiology,Zigong Fourth People's Hospital,Zigong,Sichuan,643000,China
  • Received:2025-07-16 Online:2025-10-25 Published:2026-04-25
  • Contact: Wang Wei wangwei1903@163.com

摘要: 目的 探究多模态MRI影像组学技术精准鉴别胶质母细胞瘤(primary central nervous system lymphoma,GBM)与原发性中枢神经系统淋巴瘤(primary central nervous system lymphoma,PCNSL)的价值。方法 选择2021年5月至2024年6月于本院经过手术诊断为GBM(n=52)或PCNSL(n=33)的患者为研究对象。从对比增强T1WI(CE-T1)、T2WI、T2液体衰减反转恢复(T2-Flair)序列分别提取影像组学特征。通过F检验、Pearson相关系数、LASSO筛选特征。选择K最邻近(KNN)、随机森林(RF)、支持向量机(SVM)、逻辑回归(LR)、线性判别分析(LDA)、神经网络分类器,基于影像组学特征构建预测模型,并进行5折交叉验证(5-CV)。采用受试者工作特征(ROC)曲线、校准曲线、临床决策(DCA)曲线评估模型效能。结果 GBM与PCNSL患者的肿瘤位置、病灶数量、复发/原发、MRI特点(明显均匀强化以及囊变、坏死、出血)比较差异显著(P<0.05)。经过筛选后,CE-T1、T2WI、T2-Flair序列分别保留15个、20个、15个特征,多参数MRI保留26个特征。KNN分类器多参数MRI模型的平均精确率均最大;SVM分类器多参数MRI模型的平均召回率最大;神经网络分类器多参数MRI模型的平均准确率、平均F1分数均最大。ROC曲线分析显示,LDA分类器CE-T1(0.916)、T2WI(0.930)模型的AUC最大;SVM分类器T2-Flair模型(0.865)的AUC最大;LR分类器多参数MRI模型(0.956)的AUC最大;在6种分类器中,多参数MRI模型的AUC均大于单一序列模型。DeLong检验显示,在KNN、RF、LR、神经网络中,多参数MRI模型的AUC与任何单一序列模型的AUC比较差异显著(P<0.05)。校准曲线显示,RF分类器多参数MRI模型的预测与实际概率吻合良好。DCA分析显示,6种分类器多参数MRI模型均有较好的临床收益。结论 通过多参数MRI结合机器学习(Machine learning,ML)分类器所构建的预测模型能够精准鉴别GBM与PCNSL。各分类器中多参数MRI模型的区分度、预测精度、临床价值均优于单一序列模型。

关键词: 胶质母细胞瘤, 原发性中枢神经系统淋巴瘤, 多模态MRI, 影像组学

Abstract: Objective To explore the value of multimodal MRI radiomics technology in accurately distinguishing glioblastoma (GBM) from primary central nervous system lymphoma (PCNSL). Methods Patients diagnosed with GBM (n=52) or PCNSL(n=33) through surgery at our hospital from May 2021 to June 2024 were selected as the research subjects.Radiomics features were extracted from contrast enhancement-T1 weighted imaging (CE-T1),T2WI,and T2-fluid-attenuated inversion-recovery (T2-Flair) sequences,respectively.Features were screened through F-test,Pearson correlation coefficient,and LASSO.K-nearest neighbor (KNN),random forest (RF),support vector machine (SVM),logistic regression (LR),linear discriminant analysis radiomics features,and 5-fold cross validation (5-CV) was performed.Receiver operating characteristic (ROC) curve,calibration curve,and decision curve analysis (DCA) curve were used to evaluate the effectiveness of the model. Results There were statistically differences in tumor location,number of lesions,recurrence/primary,and MRI characteristics (obvious uniform enhancement,cystic changes,necrosis,and bleeding) between GBM and PCNSL patients (P<0.05).After screening,CE-T1,T2WI,and T2-Flair sequences retained 15,20,and 15 features,respectively,while multiparametric MRI retained 26 features.The average accuracy of the KNN classifier multi parameter MRI model was the highest;The SVM classifier had the highest average recall rate for the multi parameter MRI model;The neural network classifier multi parameter MRI model had the highest average accuracy and F1 score.ROC curve analysis showed that the LDA classifier CE-T1 (0.916) and T2WI (0.930) models had the highest AUC;The SVM classifier T2-Flair model (0.865) has the highest AUC;The LR classifier had the highest AUC for the multi parameter MRI model (0.956);Among the six classifiers,the AUC of the multi parameter MRI model was greater than that of the single sequence model.DeLong test showed that the AUC of multi parameter MRI models differed significantly from that of any single sequence model in KNN,RF,LR,and neural networks (P<0.05).Calibration curve showed that the RF classifier's multi parameter MRI model's predictions matched the actual probabilities well.DCA analysis showed that all six classifier multi parameter MRI models had good clinical benefits. Conclusion The prediction model constructed by combining multi parameter MRI with machine learning (ML) classifier can accurately distinguish GBM from PCNSL.The discrimination,prediction accuracy,and clinical value of multi parameter MRI models in each classifier are superior to those of single sequence models.

Key words: Glioblastoma, Primary central nervous system lymphoma, Multimodal MRI, Radiomics

中图分类号: