[1] Louis DN,Perry A,Wesseling P,et al.The 2021 WHO classification of tumors of the central nervous system:a summary[J].Neuro-oncology,2021,23(8):1231~1251. [2] Gritsch S,Batchelor TT,Gonzalez Castro LN.Diagnostic,therapeutic,and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system[J].Cancer,2022,128(1):47~58. [3] Weller M,Van Den Bent M,Tonn JC,et al.European Association for Neuro-Oncology(EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas[J].Lancet Oncol,2017,18(6):e315~e329. [4] Gurney-Champion OJ,Mahmood F,van Schie M,et al.Quantitative imaging for radiotherapy purposes[J].Radiother Oncol,2020,146:66~75. [5] Thorwarth D.Functional imaging for radiotherapy treatment planning:current status and future directions-a review[J].Br J Radiol,2015,88(1051):20150056. [6] Gaustad JV,Rofstad EK.Assessment of intratumor heterogeneity in parametric dynamic contrast-enhanced MR images:a comparative study of novel and established methods[J].Front Oncol,2021,11:722773. [7] Choi HS,Kim AH,Ahn SS,et al.Glioma grading capability:comparisons among parameters from dynamic contrast-enhanced MRI and ADC value on DWI[J].KoreanJ Radiol,2013,14(3):487~492. [8] 王国杰,刘莹,韩艳华,等.胶质瘤患者MRI参数Ktrans值和Ve值与血清IL-10、VEGF的交互作用及对脑胶质瘤分级的诊断[J].立体定向和功能性神经外科杂志,2024,37(1):11~16. [9] Zhao J,Yang ZY,Luo B,et al.Quantitative evaluation of diffusion and dynamic contrast-enhanced MR in tumor parenchyma and peritumoral area for distinction of brain tumors[J].PLoS One,2015,10(9):e0138573. [10] Qiu J,Tao ZC,Deng KX,et al.Diagnostic accuracy of dynamic contrast-enhanced magnetic resonance imaging for distinguishing pseudoprogression from glioma recurrence:a meta-analysis[J].Chin Med J,2021,134(21):2535~2543. [11] Baine M,Burr J,Du Q,et al.The potential use of radiomics with pre-radiation therapy MR imaging in predicting risk of pseudoprogression in glioblastoma patients[J].J Imaging,2021,7(2):17. [12] Lemarié A,Lubrano V,Delmas C,et al.The STEMRI trial:Magnetic resonance spectroscopy imaging can define tumor areas enriched in glioblastoma stem-like cells[J].Sci Adv,2023,9(44):eadi0114. [13] Iwahashi H,Nagashima H,Tanaka K,et al.2-Hydroxyglutarate magnetic resonance spectroscopy in adult brainstem glioma[J].J Neurosurg,2023,139(2):355~362. [14] Ding H,Velasco C,Ye H,et al.Current applications and future development of magnetic resonance fingerprinting in diagnosis,characterization,and response monitoring in cancer[J].Cancers,2021,13(19):4742. [15] Badve C,Yu A,Dastmalchian S,et al.MR fingerprinting of adult brain tumors:initial experience[J].A JNR Am J Neuroradiol,2017,38(3):492~499. [16] Dastmalchian S,Kilinc O,Onyewadume L,et al.Radiomic analysis of magnetic resonance fingerprinting in adult brain tumors[J].Eur J Nucl Med Mol Imaging,2021,48:683~693. [17] Nuessle NC,Behling F,Tabatabai G,et al.ADC-based stratification of molecular glioma subtypes using high b-value diffusion-weighted imaging[J].J Clin Med,2021,10(16):3451. [18] Breen WG,Aryal M P,Cao Y,et al.Integrating multi-modal imaging in radiation treatments for glioblastoma[J].Neuro Oncol,2024,26(Supplement_1):S17~S25. [19] Pramanik PP,Parmar HA,Mammoser AG,et al.Hypercellularity components of glioblastoma identified by high b-value diffusion-weighted imaging[J].Int J Radiat Oncol Biol Phys,2015,92(4):811~819. [20] Lu S,Ahn D,Johnson G,et al.Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors[J].American Journal of Neuroradiology,2003,24(5):937~941. [20] LU S,AHN D,JOHNSON G,et al.Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors[J].AJNR Am J Neuroradiol,2003,24(5):937-941. [21] Scola E,Del Vecchio G,Busto G,et al.Conventional and advanced magnetic resonance imaging assessment of non-enhancing peritumoral area in brain tumor[J].Cancers,2023,15(11):2992. [21] Scola E,DEL Vecchio G,Busto G,et al.Conventional and advanced magnetic resonance imaging assessment of non-enhancing peritumoral area in brain tumor[J].Cancers(Basel),2023,15(11):2992. [22] Wang ZL,Guan FZ,Duan WC,et al.Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features[J].CNS Neurosci Ther,2023,29(11):3339~3350. [23] Henriques R N,Jespersen S N,Jones D K,et al.Toward more robust and reproducible diffusion kurtosis imaging[J].Magn Reson Med,2021,86(3):1600~1613. [24] Richter V,Nägele T,Erb G,et al.Improved diagnostic confidence and tumor type prediction in adult-type diffuse glioma by multimodal imaging including DCE perfusion and diffusion kurtosis mapping–A standardized multicenter study[J].Eur J Radiol,2024,171:111293. [25] Minh Duc N.The effectiveness of diffusion kurtosis imaging metrics for distinguishing between brainstem glioma and cerebellar medulloblastoma[J].Clin Ter,2024,175(1):20~25. [26] Genç B,Aslan K,Özçaĝlayan A,et al.Microstructural abnormalities in the contralateral normal-appearing white matter of glioblastoma patients evaluated with advanced diffusion imaging[J].Magn Reson Med Sci,2024,23(4):479~486. [27] Hempel JM,Brendle C,Adib SD,et al.Glioma-specific diffusion signature in diffusion kurtosis imaging[J].J Clin Med,2021,10(11):2325. [28] Omari EA,Zhang Y,Ahunbay E,et al.Multi‐parametric magnetic resonance imaging for radiation treatment planning[J].Med Phys,2022,49(4):2836~2845. [29] Islam KT,Wijewickrema S,O'Leary S.A deep learning based framework for the registration of three dimensional multi-modal medical images of the head[J].Sci Rep,2021,11(1):1860. [30] Bielak L,Wiedenmann N,Berlin A,et al.Convolutional neural networks for head and neck tumor segmentation on 7-channel multiparametric MRI:a leave-one-out analysis[J].Radiat Oncol,2020,15(1):181 [31] Koike Y,Akino Y,Sumida I,et al.Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy[J].J Radiat Res,2020,61(1):92~103. [32] Iancu RI,Zara AD,Mirestean CC,et al.Radiomics in head and neck cancers radiotherapy.promises and challenges[J].Maedica,2021,16(3):482~488. [33] Ellingson BM,Malkin MG,Rand SD,et al.Validation of functional diffusion maps(fDMs) as a biomarker for human glioma cellularity[J].Magnetic Resonance Imaging:2010,31(3):538~548. [34] Nakamura H,Murakami R,Hirai T,et al.Can MRI-derived factors predict the survival in glioblastoma patients treated with postoperative chemoradiation therapy[J].Acta Radiol,2013,54(2):214~220. [35] Hein PA,Eskey CJ,Dunn JF,et al.Diffusion-weighted imaging in the follow-up of treated high-grade gliomas:tumor recurrence versus radiation injury[J].AJNR Am J Neuroradiol,2004,25(2):201~209. [36] Chang PD,Chow DS,Yang PH,et al.Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images[J].AJR Am J Roentgenol,2017,208(1):57~65. [37] Zamanian M,Abedi I,Danazadeh F,et al.Multi-parametric magnetic resonance imaging assessment of response to chemo-radiotherapy in tumors of glioma cell types:a prospective study[J].2022. |