立体定向和功能性神经外科杂志 ›› 2024, Vol. 37 ›› Issue (2): 65-71.DOI: 10.19854/j.cnki.1008-2425.2024.02.0001

• 论著 •    下一篇

基于MRI的Wilson病患者中脑病变发生风险列线图预测模型的建立与验证

任昕莹, 饶娆, 汪世靖, 朱凌, 周浩, 韩永升   

  1. 230038 合肥 安徽中医药大学神经病学研究所(任昕莹,周浩,韩永升);安徽中医药大学神经病学研究所附属医院(饶娆,汪世靖,朱凌);皖南医学院(韩永升);安徽中医药大学,新安医学与中医药现代化研究所(韩永升)
  • 收稿日期:2024-04-05 出版日期:2024-04-25 发布日期:2024-06-19
  • 通讯作者: 韩永升 hyssp@126.com
  • 基金资助:
    新安医学与中医药现代化研究所“揭榜挂帅”项目 (编号:2023CXMMTCM002); 安徽省重点研究与开发计划 项目(编号:S202204295107020135); 安徽省自然科学基金项目(编号:2208085QH262); 安徽省高等学校自然科学研究重点项目(编号:KJ2021A0552)。

Establishment and Validation of a Nomogram Predictive Model for the Risk of Brainstem Lesions in Wilson's Disease Patients Based on MRI

Ren Xinying, RaoRao, Wang Shi Jing, Zhu Ling, Zhou Hao, Han Yongsheng   

  1. 1. Institute of Neurology, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China;
    2. The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, 230061, China;
    3. Wannan Medical College, Wuhu, 241002, China;
    4. Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
  • Received:2024-04-05 Online:2024-04-25 Published:2024-06-19
  • Contact: Han Yongsheng hyssp@126.com

摘要: 目的 探究Wilson病(Wilson's disease,WD)发生中脑病变的影响因素,并构建WD中脑病变的预测模型,以便早期识别及干预。方法 对2019年4月至2023年4月在安徽中医药大学附属神经病学研究所就诊的198名脑型 WD患者的临床和实验室数据进行了回顾性分析。所有患者均接受了颅脑磁共振成像(MRI)检查,并显示出不同程度颅脑MRI改变。采用LASSO回归及多因素Logistic回归分析筛选出影响中脑病变发生的因素,并构建列线图预测模型。采用受试者工作特征(ROC)曲线、校准曲线和临床决策曲线(DCA)验证预测模型的有效性。最后用1000次bootstrap及10折交叉验证对模型进行内部验证。结果 WD患者的年龄、MRI脑桥病变和丘脑病变为中脑病变的独立风险因素。列线图具有良好的区分度、校准度及临床实用性。经1000次bootstrap及10折交叉验证,模型区分度及校准度仍显示出良好的预测能力。结论 本研究中开发的列线图预测模型的预测及区分能力较好,可以帮助临床医生预测WD患者的中脑病变的发生,有一定的临床转化应用价值。

关键词: Wilson病, 中脑, 列线图, 预测模型

Abstract: Objective To investigate the influencing factors of brain lesions in Wilson's disease(WD) and to construct a predictive model for brain lesions in WD to facilitate early identification and intervention. Methods A retrospective analysis was conducted on the clinical and laboratory data of 198 patients with neurological WD who were treated at the Neurology Institute affiliated with Anhui University of Chinese Medicine from April 2019 to April 2023.All patients underwent cranial magnetic resonance imaging(MRI) and exhibited varying degrees of MRI changes in the brain.LASSO regression and multivariate Logistic regression analysis were used to identify factors influencing the occurrence of brain pathology and to construct a nomogram prediction model.The effectiveness of the predictive model was verified using the receiver operating characteristic(ROC) curve, calibration curve, and decision curve analysis(DCA).The model was internally validated using 1000 bootstrap resamples and 10-fold cross-validation. Results The age of WD patients, and MRI findings of pontine and thalamic lesions were identified as independent risk factors for brain pathology.The nomogram demonstrated good discrimination, calibration, and clinical utility.After 1000 bootstrap resamples and 10-fold cross-validation, the model maintained robust predictive performance. Conclusion The nomogram prediction model developed in this study has good predictive and discriminative capabilities, which can assist clinicians in predicting the occurrence of brainstem lesions in WD patients and has potential clinical translational application value.

Key words: Wilson's Disease, Mesencephalon, Nomogram, Predictive Model

中图分类号: